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 I. INTRODUCTION

Spiral Computed Tomography (CT) with area detectors is
of increasing interest for scanning large volumes in a short
time and achieving isotropic resolution. When the cone-angle
is large, exact reconstruction algorithms are needed which go
beyond approximate solutions.

A major problem of spiral cone-beam CT is the so-called
long-object problem, which concerns the exact reconstruction
of a region-of-interest (ROI) of a long object using projection
data of a pure spiral scan covering the ROI and its immediate
vicinity only. This problem has been recently solved with
different approaches: the Virtual Circle method [1], the Zero
Boundary method [2], and the Local ROI technique [3].
Although all these methods are theoretically justified, they
have different approaches and therefore some differences in
numerical behavior and in effectiveness are expected.

The purpose of this study is to evaluate the performances of
these algorithms regarding image quality and practicability.
Here, we concentrate on Filtered-Backprojection-type (FBP)
algorithms. A comparison between Radon- and FBP-based
algorithms for the Local ROI method can be found in [4].
Image quality is determined on the basis of image artifacts,
spatial resolution and noise properties. For practicability, the
computing time as well as the overscan range required for the
ROI reconstruction (i.e. the z-extension of the spiral below and
above the ROI) are compared.

 II. DESCRIPTION OF THE METHODS

The reconstruction of a short-object from axially truncated
projections can be performed with an exact (or quasi-exact) 3D
Filtered Backprojection (FBP) approach, as proposed in [5][6].
The method is based on the generalization of Grangeat's
formula for calculating the Radon data and requires the cone-
beam projections to be measured in some region B on the
detector which is bounded by the projection of the upper and of
the lower turn of the spiral. A straightforward implementation
of the filtering step is the 4-step algorithm, which consists in
performing some line integral derivatives on the cone-beam
projection, backprojecting them on a virtual detector (which is
large enough to cover the cone-beam projection of the whole
object) and applying a final derivative filter. Alternatively, the
filtering step can be carried out by convolution with an 1D

ramp filter plus some boundary correction term involving only
data at the boundaries of the region B [5][6] (these boundaries
will be referred below as the mask boundaries). The 4-step
algorithm is the basis of the Local ROI method whereas the 1D
ramp filter approach is the basis of the Virtual Circle and of
the Zero Boundary methods.

A. The Virtual Circle Method (VC)

One solution to the long-object problem is to add two
supplementary circle scans at the bottom and at the top of the
ROI [7]. However, this is not practical for medical imaging. It
can be shown that the particular projection data of the circle
scans needed for the reconstruction of the ROI can be
synthesized from the data of the spiral scan. Therefore a real
measurement of the circle scans is not necessary and the
synthesized data are regarded as virtual data.

B. The Zero Boundary Method (ZB)

Since only the data on the boundaries of the region B
cause troubles in the long-object problem, the Zero Boundary
method treats them separately. The image to be reconstructed
is expressed as the sum of two partial images. The first image
can be reconstructed such that its cone-beam projections are
equal to the data on the mask boundaries, exploiting the
property that each point in the field-of-view belongs to one and
only one PI-line. The second image can be reconstructed from
the projections with zeroed mask boundaries, using a standard
3D FBP with ramp filtering and cone-beam backprojection.

C.  The Local ROI Method (LR)

In the Local ROI technique [3], the Radon derivative data
are grouped on φ-planes (meridian planes) containing the z-
axis. The Radon derivative data on different φ-planes are
computed for different portions of the object, which are called
local ROI's. Each local ROI is defined by the parallel
projection of the spiral scan path onto the corresponding φ-
plane, so that the contributing cone beams are not
contaminated by object information outside the local ROI. A
(global) ROI consisting of the intersection of all local ROI's
can be reconstructed without interference from the parts of the
object outside the ROI. The Local ROI method was formulated
as a Radon-based algorithm [8], as well as an FBP-based 4-
step algorithm [9][10].



 III. SIMULATION EXPERIMENTS

Image quality is evaluated with simulated projection data.
The scanner geometry is based on standard parameters of
medical scanners: the radius of the focus path is 57 cm and the
detector is at the distance 43.5 cm from the z-axis. We take
1056 projections per rotation. We choose a table feed value of
12.8 cm per turn, which corresponds to a full cone-angle of
7.2°. For this large angle, approximate algorithms usually do
not perform well any more.

Different phantoms are used for this study: a 3D
anthropomorphic Head Phantom [11] for the investigation of
artifacts, simulated ideal delta points for the evaluation of
spatial resolution, and a homogeneous water sphere phantom
of 20 cm diameter for the study of noise properties. The
simulations are done for a flat detector with square pixels of
dimensions (0.88 mm)2, which corresponds to a square pixel
size of (0.5 mm)2 at the center of rotation. For the Head
phantom and the water sphere, the simulated detector has
512×256 pixels.

The VC and the ZB methods have been implemented as
originally published in [1] and [2], respectively. The filtering
of the 4-step in the LR method has been implemented with the
help of the linogram method [12], yielding an improvement in
efficiency and accuracy, compared to the original published
algorithm [10].

 IV. EVALUATION OF IMAGE QUALITY

A. Visual Image Impression and Artifacts

The reconstructions of the Head Phantom for the three
methods are shown in Fig. 1. The results of the reconstruction
of the whole object are compared with a ROI reconstruction.
For the whole object reconstruction, the spiral consists of 2.97
turns covering a z-range of [-19 cm, 19 cm]; the ROI
reconstruction is obtained from projections of 2 turns covering
the range [-12.8 cm, 12.8 cm]. The reconstructed volumes
consist of 5123 voxels of dimensions (0.5 mm)3.

Fig. 1: Reconstruction of the 3D Head phantom for the three different algorithms. First row: VC. Second row: ZB. Third row: LR.
a) xy-plane at z=0 b) yz-plane at x=0 with reconstruction of the whole object, c) yz-plane at x=0 with ROI reconstruction, d) difference
between b) and c) - Window settings: a) to c) (C50, W80)  d) (C0,W20)
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The images are of good quality for all algorithms. The
different objects of the phantom are well represented despite
the relatively large cone-angle. The ROI reconstruction does
not bring additional artifacts, which proves that the methods
for short- and long-object reconstructions are equivalent.

A noticeable artifact is the wave in the axial slice, which
comes from the small air bubbles of the right inner ear and is
present for all methods. At the moment, we do not understand
the origin of this artifact.

The ZB method presents some small artifacts in the region
of the frontal sinus, which is probably due to a resolution
mismatch between the 2 partial images. Some small artifacts
are also to be seen in the VC method. None of these artifacts
are present for the LR method, but we can notice
undershooting around some of the high contrast objects. This
undershooting is probably related to the calculation of the
derivative filters in the 4-step algorithm.

B. Spatial Resolution

We simulate an ideal delta point at the origin of the
coordinate system (x=y=z=0) and reconstruct the 3D Point
Spread Function (PSF) for each algorithm. The reconstruction
is performed with a voxel size of (0.02 mm)3.

The in-plane Modulation Transfer Function (MTF) is
obtained from the 3D PSF in the slice z=0 by averaging the
radial profiles over all angles and performing a subsequent
Hankel transform (see Fig. 2).
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Fig. 2: In-plane MTF for the LR (solid line), the VC (dashed line)
and the ZB method (dotted line). The Nyquist frequency is 10 lp/cm.

The VC and ZB methods should have a similar behavior
since they both apply a ramp filter. The difference noted here
comes from the difference in the current implementations since
the ZB method uses a Hamming window in comparison to the
Shepp-Logan window used for the VC method. This also
explains why the MTF of the VC method extends beyond the
Nyquist frequency, thus causing a risk of aliasing. The ZB and
LR algorithms cut off at the Nyquist frequency, while LR
yields better frequency representations than ZB.

To characterize in-plane resolution, we choose the 5% value
(ρ5) of the in-plane MTF value. The values can be found in
Table 1. A Nyquist frequency of 10 lp/cm is expected from the
horizontal detector aperture.

To determine axial resolution, we calculate the Slice
Sensitivity Profile (SSP) which is derived from the 3D PSF by

taking the profile along z at the position x=y=0 (see Fig. 3).
Axial resolution is characterized by the value of the Full Width
at Half Maximum (FWHM) of the SSP (see Table 1).
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Fig. 3: SSP for the LR (solid line), the VC (dashed line) and the
ZB method (dotted line)

The VC and the ZB methods have an identical SSP since
they are almost equivalent in the axial direction (no filtering).
We obtain a FWHM of about 1.27 collimated slices. The axial
resolution of the LR method is less good (about 1.5 collimated
slice widths). Moreover, we notice the undershooting already
seen in Fig.1.

Note that the PSF’s of the algorithms are shift-variant due
to the magnification effect of the cone-beam backprojection.

Table 1
In-plane / axial spatial resolutions and noise level

for the three methods

LR VC ZB

ρ5 [lp/cm] 8.7 12.5 7.9

FWHMSSP [cm] 0.074 0.063 0.064

σNoise [HU] 9.7 14.2 6.7

C. Noise Properties

In order to model real quanta noise, we add attenuation
dependent randomized gaussian noise to the original intensity
projections before taking the logarithm. To compare the noise
performances of the algorithms, we simulate and reconstruct a
sphere of diameter 20 cm of constant density. As a measure of
noise, the standard deviation of pixel gray values is evaluated
in an area of (2 cm × 2 cm) centered in the slice z=0.

The amount of noise is strongly related to spatial resolution
(see Table 1). Thus, the VC method with its superior spatial
resolution shows more noise than the other methods.

 V. PRACTICABILITY

A. Overscan

As shown in Fig. 1.c, the three methods require different
overscan ranges to reconstruct a ROI. This overscan depends
on the transaxial radius of the ROI (see Fig. 4). For objects of
small radius (radius < 0.5 of the scan path radius), the LR
method needs a larger overscan than the other two methods.
The minimum spiral length required for exact ROI



reconstruction is still unclear and is subject to further
investigations.
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Fig. 4: Overscan expressed in terms of turns of the spiral as a
function of the radius of the object: LR (solid line), VC (dashed line)
and ZB method (dotted line).

For the Head Phantom (maximal object radius = 12 cm),
we find overscan values of  4.6 cm, 5.2 cm and 10 cm along
the z-axis for the VC, ZB and LR methods, respectively, which
corresponds to a minimal theoretical ROI size of 16.4 cm, 15.2
cm and 5.6 cm. Since the object is not a cylinder but an
ellipsoid, the real size of the ROI’s might be larger. Note that
the ROI that can be exactly reconstructed usually is not
cylindrical but has slanted edges with respect to the xy-plane.

B. Reconstruction Time

The reconstruction time of the three non-optimized
implementations presented here for the reconstruction of the
ROI of the Head phantom are given in Table 2. The times have
been obtained on a Pentium 450MHz with 512 MB memory.

The reconstruction times are quite long in comparison to
standard 2D CT reconstruction algorithms. The VC and ZB
methods are much faster than the LR method because of the
simple filtering step. The ZB method requires more effort due
to the separate treatment of the projection data on the mask
boundaries consisting of 3D re- and backprojection, but on the
other hand the backprojection is much faster since the size of
the filtered detector is smaller.

Table 2
Reconstruction time in hours for the ROI reconstruction of Fig. 1.c.

LR VC ZB

100 45 51

C. Data Handling

The VC and LR methods are quite attractive since they are
of real FBP-type. The ZB method in comparison requires
many steps for creating the 2 partial images and therefore also
a lot of disk memory to save the temporary results. On the
other hand, the FBP for VC and LR has to be done on a virtual
detector which is much larger than the original detector
depending on the reconstructed ROI size, whereas the FBP of
ZB can be done on the original detector. However it is possible
to perform multi ROI reconstructions as proposed in [1].

 VI. CONCLUSION

All three algorithms achieve an image quality good enough
to match the requirements of clinical applications. However,
the long computation times are prohibitive for any usage
beyond research applications.

In terms of image quality, all algorithms investigated here
are comparable. It turns out that the three algorithms have a
good stability and that the main factor affecting the image
quality of the reconstructions is the filter design. In the current
implementations, the images of the LR method show less
artifacts, while the VC algorithm yields the higher spatial
resolution. In terms of practicability, the VC method is
superior to the ZB and LR methods. For most clinical
applications, it requires fewer projections and less computing
time to reconstruct a given ROI. The overscan strongly
depends on the size of the objects; while the LR method is not
competitive for small objects (e.g. head), the amount of
overscan is comparable for larger objects like thorax or
abdomen.
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